China Custom Man 51968200241 51968200248 Belt Tensioner, V-Ribbed Belt with Great quality

Product Description

MAN Belt Tensioner, v-ribbed belt

OEM:51968205718

REF NO.: APV1126 SKF:VKMCV55   Application   MAN

Place of Origin

ZHangZhoug, China

Material

   Aluminium   Product Name

Belt Tensioner

Reference NO.

 

Packing

Neutral Packing

SHIPPING TERM

Sea/Air

Quality

100%tested

Size

same as OEM

After-sales Service: 1 Year
Warranty: 1 Year
Certification: CCC, ISO9001, TS16949
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

v belt

What are the best practices for storing spare V-belts to maintain their quality?

Proper storage of spare V-belts is essential to maintain their quality and ensure their performance when they are needed. Here are some best practices for storing spare V-belts:

  1. Clean and Dry Environment:
  2. Store the V-belts in a clean and dry environment to prevent contamination and moisture damage. Avoid storing them in areas where they may be exposed to dirt, dust, chemicals, or excessive humidity. Keeping the storage area clean and well-ventilated helps preserve the integrity of the belts.

  3. Temperature and Humidity Control:
  4. Ensure that the storage area has controlled temperature and humidity levels. Extreme temperatures or high humidity can adversely affect the belt material, leading to deterioration or loss of elasticity. Ideally, the temperature should be kept within a range of 10°C to 30°C (50°F to 86°F), and the humidity should be maintained at around 40% to 70%.

  5. Avoid Direct Sunlight:
  6. Direct exposure to sunlight can cause the belt material to degrade over time. Store the spare V-belts away from direct sunlight or any other sources of ultraviolet (UV) radiation. If possible, use opaque containers or covers to shield the belts from light.

  7. Avoid Bending or Twisting:
  8. Do not store the V-belts in a way that causes excessive bending or twisting. This can result in permanent deformation or stress on the belts, compromising their performance. Keep the belts flat or hang them in a manner that maintains their original shape.

  9. Proper Packaging:
  10. If the V-belts are stored in packaging, ensure that the packaging is intact and provides adequate protection against external elements. Avoid storing the belts in damaged or torn packaging, as it may expose them to contaminants or moisture.

  11. First-In-First-Out (FIFO) Rotation:
  12. Implement a first-in-first-out (FIFO) rotation system for spare V-belts. This means using the oldest belts first and replenishing the stock with newly purchased belts. This practice helps prevent the storage of belts for extended periods, reducing the risk of degradation or obsolescence.

  13. Regular Inspections:
  14. Periodically inspect the stored V-belts for any signs of damage, such as cracks, brittleness, or deterioration. If any issues are detected, replace the affected belts promptly to ensure that only high-quality spare belts are available for use when needed.

By following these best practices, you can maintain the quality and performance of spare V-belts, ensuring that they are ready for use and prolonging their service life.

v belt

What are the key differences between V-belts and other types of power transmission belts?

V-belts are a popular type of power transmission belts, but they differ from other types of belts in terms of design, construction, and specific applications. Here are the key differences:

1. Belt Profile:

V-belts have a trapezoidal or V-shaped cross-sectional profile, which gives them their name. This profile allows the belts to fit securely into V-shaped pulleys, providing effective power transmission and grip. Other types of belts, such as flat belts or timing belts, have different profiles suited for specific applications.

2. Power Transmission Method:

V-belts transmit power through frictional forces between the belt and the pulleys. As the belt wraps around the pulleys, the friction between the belt and the pulley surfaces allows the transfer of torque and power. In contrast, other belts, like timing belts or chain drives, use toothed profiles or interlocking mechanisms to transmit power, providing precise synchronization and higher torque transmission.

3. Load Capacity:

V-belts are designed to handle moderate to high loads, making them suitable for a wide range of applications. However, certain applications with heavier loads may require specialized heavy-duty V-belts or alternative belt types, such as synchronous belts or chain drives, which offer higher load-carrying capacities.

4. Speed Range:

V-belts are suitable for a broad speed range, but their limitations may vary depending on the specific design, material, and construction. Traditional V-belts may have speed limitations at extremely high speeds due to centrifugal forces and heat generation. High-speed V-belts or narrow V-belts are available for applications that require higher speeds. In contrast, timing belts and synchronous belts are designed for precise speed control and are commonly used in applications with strict speed requirements.

5. Tensioning and Maintenance:

V-belts require periodic tensioning to maintain proper grip and power transmission efficiency. Tensioning is typically achieved through manual adjustment or automatic tensioners. Other types of belts, such as timing belts or chain drives, often have fixed tensioning systems and require less frequent maintenance.

6. Noise and Vibration:

V-belts generally operate with lower noise and vibration levels compared to other types of belts, such as chain drives. The design and frictional nature of V-belts contribute to smoother operation and reduced noise generation, making them suitable for applications where noise and vibration control is important.

7. Applications:

V-belts are widely used in various applications, including industrial machinery, automotive systems, HVAC systems, and power transmission in general. They are versatile and can accommodate different power requirements. Other belt types, such as timing belts, are commonly used in precision positioning, robotics, or applications that require synchronous motion.

Overall, V-belts offer reliable and cost-effective power transmission for a wide range of applications. However, the selection of the appropriate belt type depends on factors such as load requirements, speed range, precision, noise considerations, and specific application needs.

v belt

What are the different types of V-belts available and their applications?

There are several types of V-belts available, each designed for specific applications and requirements. The most common types of V-belts include:

  1. Classic V-belts: Also known as conventional V-belts, these are the standard V-belts with a trapezoidal cross-section. They are widely used in various industrial applications for general power transmission, such as in HVAC systems, agricultural machinery, and industrial equipment.
  2. Narrow V-belts: Narrow V-belts are narrower than classic V-belts and have a narrower V-shaped profile. They are suitable for applications where space is limited or where high-speed ratios are required. These belts are commonly used in automotive engines, power tools, and small appliances.
  3. Wedge V-belts: Wedge V-belts, also known as narrow section V-belts, have a wider and deeper V-shaped cross-section compared to classic V-belts. This design allows for higher power transmission capacity and better resistance to belt slippage. Wedge V-belts are used in heavy-duty applications, such as in industrial machinery, mining equipment, and large agricultural machinery.
  4. Double V-belts: Double V-belts consist of two V-belts joined side by side. These belts provide increased power transmission capacity and are commonly used in applications where high torque is required, such as in heavy-duty machinery, pumps, and compressors.
  5. Variable Speed V-belts: Variable speed V-belts, also known as V-ribbed belts or multi-rib belts, have a ribbed surface on one side of the belt. This design allows for improved flexibility and enhanced power transmission efficiency. Variable speed V-belts are commonly used in automotive engines, industrial machinery, and appliances where variable speed control is required.

The choice of V-belt type depends on factors such as the power transmission requirements, space limitations, speed ratios, and the specific application. It is important to select the appropriate V-belt type based on these factors to ensure efficient and reliable power transmission.

In summary, the different types of V-belts available include classic V-belts, narrow V-belts, wedge V-belts, double V-belts, and variable speed V-belts. Each type has its own characteristics and is suitable for specific applications based on power transmission needs and requirements.

China Custom Man 51968200241 51968200248 Belt Tensioner, V-Ribbed Belt   with Great quality China Custom Man 51968200241 51968200248 Belt Tensioner, V-Ribbed Belt   with Great quality
editor by CX 2023-11-27

TAGs:belt

V Belt

As one of the v belts manufacturers, suppliers, and exporters of mechanical products, We offer v belts and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of v belts.

Recent Posts