China manufacturer Auto Parts Engine Ribbed V Belt 90916-T2013 for Japanese Car axle cap

Product Description

Auto Parts Engine Ribbed V Belt 9571-T2013 For Japanese Car

 

Product Specifications:

OEM No 9571-T2013
Apply fo

For car 

Brand: FENGMING
Condition: Brand New
Stock Availability: Yes
Minimum Order QTY 2PCS
OEM Order Acceptability: Yes
Small order Lead Time: 2-5 days
Large Order Lead Time: 15-30 days
Quality Warranty 12 months
PACKAGING As neutral or as customer’s request, FENG MING PACKING
Payment Methods: Paypal, Western Union, Bank T/T, L/C
Shipment Methods: DHL, UPS, TNT, FedEx, Aramex, EMS, Air Cargo, Sea Cargo


Company Introduction

More Information: 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Application: Car
Feature: Oil-Resistant
Samples:
US$ 9/Piece
1 Piece(Min.Order)

|

Order Sample

Good Quality
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

v belt

How do you calculate the power rating and speed capacity of a V-belt system?

Calculating the power rating and speed capacity of a V-belt system involves considering various factors such as belt type, pulley dimensions, belt tension, and speed. Here’s a general overview of the calculations involved:

  1. Power Rating Calculation:
  2. To calculate the power rating of a V-belt system, you need to determine the maximum power that the belt can transmit without slipping or experiencing excessive wear. The power rating is typically expressed in horsepower (HP) or kilowatts (kW).

    The formula for calculating the power rating is:

     Power (HP or kW) = (Tension in belt (lb or N) * Belt speed (ft/min or m/s)) / 33,000 (for HP) or 1,000 (for kW) 

    The tension in the belt can be determined based on the design requirements of the system and is influenced by factors such as the type of application and the desired safety factor.

  3. Speed Capacity Calculation:
  4. The speed capacity of a V-belt system is the maximum rotational speed at which the belt can operate without experiencing excessive vibration or failure. It is typically expressed in revolutions per minute (RPM).

    The formula for calculating the speed capacity is:

     Speed (RPM) = (Belt pitch diameter (in or mm) * π * Belt speed (ft/min or m/s)) / 12 (for in) or 1000 (for mm) 

    The belt pitch diameter is determined based on the pulley dimensions and is the effective diameter at which the belt engages with the pulley.

It’s important to note that these calculations provide general guidelines, and actual power rating and speed capacity may vary depending on the specific belt and pulley design, as well as other factors such as belt tensioning, environmental conditions, and system efficiency. It is recommended to consult the belt manufacturer’s guidelines or seek assistance from an engineer experienced in power transmission systems to ensure accurate calculations and appropriate belt selection for a given application.

v belt

What are the factors that affect the lifespan and efficiency of V-belts?

The lifespan and efficiency of V-belts can be influenced by several factors. Here are the key factors that can affect the performance of V-belts:

  1. Belt Tension:
  2. Proper belt tension is crucial for the longevity and efficiency of V-belts. Insufficient tension can cause slippage, while excessive tension can lead to excessive load on the belt and other components. It is important to follow the manufacturer’s recommendations for the correct tension range.

  3. Belt Alignment:
  4. Poor belt alignment can cause uneven wear, increased friction, and reduced efficiency. Misaligned pulleys can cause the belt to run at an angle, resulting in premature wear and potential failure. Regularly check and adjust the alignment of pulleys to ensure proper belt tracking.

  5. Belt Condition:
  6. The condition of the V-belt itself is a significant factor in its lifespan and efficiency. Regularly inspect the belt for signs of wear, cracks, fraying, or glazing. Replace worn-out or damaged belts promptly to avoid further issues.

  7. Maintenance and Lubrication:
  8. Proper maintenance and lubrication can significantly extend the lifespan of V-belts. Adequate lubrication reduces friction and heat buildup, which helps to prevent premature wear and cracking. Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant.

  9. Operating Conditions:
  10. Operating conditions, such as temperature, humidity, and exposure to chemicals or contaminants, can affect the performance of V-belts. Extreme temperatures can cause the belt material to deteriorate, while exposure to chemicals or contaminants can lead to belt degradation. Ensure that the operating conditions are within the recommended range for the specific V-belt.

  11. Load and Application:
  12. The load and application requirements also impact the lifespan and efficiency of V-belts. Excessive loads or improper application can cause excessive stress on the belt, leading to premature failure. Ensure that the V-belt is appropriately sized and rated for the specific load and application.

By considering these factors and implementing proper maintenance practices, such as regular inspections, correct tensioning, alignment checks, and appropriate lubrication, you can maximize the lifespan and efficiency of V-belts in your applications.

v belt

What are the different types of V-belts available and their applications?

There are several types of V-belts available, each designed for specific applications and requirements. The most common types of V-belts include:

  1. Classic V-belts: Also known as conventional V-belts, these are the standard V-belts with a trapezoidal cross-section. They are widely used in various industrial applications for general power transmission, such as in HVAC systems, agricultural machinery, and industrial equipment.
  2. Narrow V-belts: Narrow V-belts are narrower than classic V-belts and have a narrower V-shaped profile. They are suitable for applications where space is limited or where high-speed ratios are required. These belts are commonly used in automotive engines, power tools, and small appliances.
  3. Wedge V-belts: Wedge V-belts, also known as narrow section V-belts, have a wider and deeper V-shaped cross-section compared to classic V-belts. This design allows for higher power transmission capacity and better resistance to belt slippage. Wedge V-belts are used in heavy-duty applications, such as in industrial machinery, mining equipment, and large agricultural machinery.
  4. Double V-belts: Double V-belts consist of two V-belts joined side by side. These belts provide increased power transmission capacity and are commonly used in applications where high torque is required, such as in heavy-duty machinery, pumps, and compressors.
  5. Variable Speed V-belts: Variable speed V-belts, also known as V-ribbed belts or multi-rib belts, have a ribbed surface on one side of the belt. This design allows for improved flexibility and enhanced power transmission efficiency. Variable speed V-belts are commonly used in automotive engines, industrial machinery, and appliances where variable speed control is required.

The choice of V-belt type depends on factors such as the power transmission requirements, space limitations, speed ratios, and the specific application. It is important to select the appropriate V-belt type based on these factors to ensure efficient and reliable power transmission.

In summary, the different types of V-belts available include classic V-belts, narrow V-belts, wedge V-belts, double V-belts, and variable speed V-belts. Each type has its own characteristics and is suitable for specific applications based on power transmission needs and requirements.

China manufacturer Auto Parts Engine Ribbed V Belt 90916-T2013 for Japanese Car   axle capChina manufacturer Auto Parts Engine Ribbed V Belt 90916-T2013 for Japanese Car   axle cap
editor by CX 2024-04-09