China Hot selling Xpb2000 Toothed V-Belts/Super Tx Vextra Belts axle differential

Product Description

XPB2000 Toothed V-belts/Super TX Vextra Belts

Specification

There’s 556 pcs of XPB2000 belts are available in stock now, you can send me an email or Skype messages or What’sapp

messages to contact me if want to order or consult information of XPB2000 belts, the prompt response, competitive prices,

superior quality and service are waiting for you.

The detailed technical sheet of XPB2000 belts as follows:
 

Model XPB2000
Type V-belts
Description Toothed V-belts/Super TX Vextra Belts
mass 0.2 KG
Service Neutral/OEM/As per your request
Package Carton Box
Stock Qty 556 pcs
Country of Origin USA/Germany
HS Code 4571390000

Wanna more information of XPB2000 beltss, or still sourcing any other bearings, linear blocks/rails, industrial V-belts or sparg plugs,

just contact me now. 

In addition, the following V-belts are available now, pls feel free to let me know if you’re interested in it:

XPA series of toothed V-belt
XPA732 , XPA747 , XPA757 , XPA770 , XPA782 , XPA800 , XPA810 , XPA820 , XPA832 ,XPA850 , XPA857 , XPA882 , XPA900 , XPA907 , XPA925 , XPA932 , XPA950 , XPA957 ,XPA975 , XPA982 , XPA1000 , XPA1007 , XPA1030 , XPA1060 , XPA1080 , XPA1090 ,XPA1107 , XPA1120 , XPA1132 , XPA1140 , XPA1150 , XPA1157 , XPA1180 , XPA1207 , XPA1215 , XPA1232 , XPA1250 , XPA1272 , XPA1282 , XPA1307 , XPA1320 , XPA1332 , XPA1357 , XPA1382 , XPA1400 , XPA1407 , XPA1432 , XPA1450 , XPA1457 , XPA1482 , XPA1500 , XPA1500 , XPA1507 , XPA1532 , XPA1550 , XPA1557 , XPA1582 , XPA1600 , XPA1607 , XPA1632 , XPA1650 , XPA1657 , XPA1682 , XPA1700 , XPA1732 , XPA1750 , XPA1757 , XPA1782 , XPA1800 , XPA1807 , XPA1832 , XPA1850 , XPA1857 , XPA1882 , XPA1900 , XPA1907 , XPA1932 , XPA1950 , XPA1957 , XPA1982 , XPA2000 , XPA2032 , XPA2060 , XPA2082 , XPA2120 , XPA2132 , XPA2182 , XPA2240 , XPA2282 , XPA2300 , XPA2332 , XPA2360 , XPA2382 , XPA2430 , XPA2482 , XPA2500 , XPA2532 , XPA2582 , XPA2607 , XPA2632 , XPA2650 , XPA2682 , XPA2732 , XPA2782 , XPA2800 , XPA2832 , XPA2847 , XPA2882 , XPA2900 , XPA2932 , XPA2982 , XPA3000 , XPA3150 , XPA3350 , XPA3550

XPB series of toothed V-belt
XPB1130 , XPB1180 , XPB1230 , XPB1250 , XPB1260 , XPB1280 , XPB1320 , XPB1340 , XPB1360 , XPB1380 , XPB1400 , XPB1410 , XPB1430 , XPB1460 , XPB1480 , XPB1500 , XPB1510 , XPB1540 , XPB1590 , XPB1600 , XPB1640 , XPB1660 , XPB1690 , XPB1700 , XPB1720 , XPB1740 , XPB1800 , XPB1840 , XPB1870 , XPB1900 , XPB2000 , XPB2571 , XPB2040 , XPB2100 , XPB2120 , XPB2150 , XPB2160 , XPB2170 , XPB2220 , XPB2240 , XPB2280 , XPB2350 , XPB2360 , XPB2380 , XPB2410 , XPB2430 , XPB2500 , XPB2530 , XPB2600 , XPB2650 , XPB2680 , XPB2730 , XPB2800 , XPB2840 , XPB2910 , XPB2990 , XPB3000 , XPB3110 , XPB3150 , XPB3170 , XPB3340 , XPB3550

XPC series of toothed V-belt
XPC2000, XPC2120, XPC2240, XPC2360, XPC2500 ,XPC2650, XPC2800XPC3000, XPC3150, XPC3350, XPC3550, XPC3750 ,XPC4000 ,XPC4250, XPC4500 XPC4750

XPZ series of toothed V-belt
XPZ560 ,XPZ612 ,XPZ621 ,XPZ630 ,XPZ637 ,XPZ662 ,XPZ670 ,XPZ687 ,XPZ710,XPZ722 ,XPZ730 ,XPZ737 ,XPZ750 ,XPZ760 ,XPZ762 ,XPZ772 ,XPZ787 ,XPZ800,XPZ812 ,XPZ825 ,XPZ837 ,XPZ850 ,XPZ862 ,XPZ875 ,XPZ887 ,XPZ900 ,XPZ912,XPZ925 ,XPZ937 ,XPZ950 ,XPZ962 ,XPZ975 ,XPZ987 ,XPZ1000 ,XPZ1571 , XPZ1012 , XPZ1571 , XPZ1030 , XPZ1037 , XPZ1047 , XPZ1060 , XPZ1077 , XPZ1080 , XPZ1087 , XPZ1100 , XPZ1112 , XPZ1120 , XPZ1140 , XPZ1150 , XPZ1162 , XPZ1180 , XPZ1187 , XPZ1200 , XPZ1212 , XPZ1222 , XPZ1237 , XPZ1250 , XPZ1262 , XPZ1270 , XPZ1287 , XPZ1312 , XPZ1320 , XPZ1337 , XPZ1340 , XPZ1347 , XPZ1362 , XPZ1387 , XPZ1400 , XPZ1412 , XPZ1420 , XPZ1437 , XPZ1450 , XPZ1462 , XPZ1487 , XPZ1500 , XPZ1512 , XPZ1520 , XPZ1537 , XPZ1550 , XPZ1562 , XPZ1587 , XPZ1600 , XPZ1612 , XPZ1637 , XPZ1650 , XPZ1662 , XPZ1687 , XPZ1700 , XPZ1737 , XPZ1750 , XPZ1762 , XPZ1782 , XPZ1800 , XPZ1812 , XPZ1837 , XPZ1850 , XPZ1862 , XPZ1887 , XPZ1900 , XPZ1937 , XPZ1950 , XPZ1987 , XPZ2000 , XPZ2030 , XPZ2060 , XPZ2120 , XPZ2160 , XPZ2240 , XPZ2280 , XPZ2360 , XPZ2410 , XPZ2487 , XPZ2500 , XPZ2540 , XPZ2650 , XPZ2690 , XPZ2840 , XPZ3000 , XPZ3170 , XPZ3350 , XPZ3550
 

Detailed Photos

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Food Machinery, Marine, Mining Equipment
Feature: Anti-Static, Oil-Resistant, Cold-Resistant, Corrosion-Resistant, Heat-Resistant, High Temperature-Resistance
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

v belt

Are there any specific guidelines for aligning pulleys and V-belts?

Proper alignment between pulleys and V-belts is essential to ensure smooth operation, minimize wear, and maximize the efficiency of the belt drive system. Here are some specific guidelines for aligning pulleys and V-belts:

  1. Parallel Alignment:
  2. The pulleys should be aligned parallel to each other, meaning that the axes of the pulleys should be in the same plane. This ensures that the V-belt runs straight and evenly between the pulleys. Misalignment can cause the belt to run at an angle, leading to increased wear and reduced efficiency.

  3. Angular Alignment:
  4. In addition to parallel alignment, the pulleys should be aligned angularly. This means that the pulley faces should be perpendicular to the belt’s direction of travel. Angular misalignment can cause the belt to twist and create uneven tension, resulting in increased wear and potential belt failure.

  5. Alignment Tools:
  6. To achieve proper alignment, various alignment tools can be used, such as straightedges, laser alignment tools, or alignment software. These tools help in measuring and adjusting the alignment of pulleys, ensuring precise parallel and angular alignment.

  7. Adjustment Methods:
  8. To adjust the alignment of pulleys, different methods can be employed. Common adjustment methods include shimming, moving the pulley on its shaft, or using adjustable pulleys. The specific method depends on the type of pulley and the adjustment capabilities of the system.

  9. Regular Inspections:
  10. Regular inspections are crucial to identify and correct any misalignment issues promptly. Inspect the pulleys visually and check for any signs of misalignment, such as uneven belt wear, belt tracking issues, or abnormal belt noise. If misalignment is detected, take corrective measures to realign the pulleys.

  11. Manufacturer Recommendations:
  12. Always refer to the manufacturer’s guidelines and specifications for pulley alignment. Manufacturers often provide specific alignment tolerances and recommendations for their products, considering factors such as belt type, load, and operating conditions. Follow these recommendations to ensure proper alignment and optimize the performance of the belt drive system.

By following these guidelines for aligning pulleys and V-belts, you can minimize wear, reduce the risk of belt failure, and maximize the efficiency and lifespan of the belt drive system.

v belt

What are the key differences between V-belts and other types of power transmission belts?

V-belts are a popular type of power transmission belts, but they differ from other types of belts in terms of design, construction, and specific applications. Here are the key differences:

1. Belt Profile:

V-belts have a trapezoidal or V-shaped cross-sectional profile, which gives them their name. This profile allows the belts to fit securely into V-shaped pulleys, providing effective power transmission and grip. Other types of belts, such as flat belts or timing belts, have different profiles suited for specific applications.

2. Power Transmission Method:

V-belts transmit power through frictional forces between the belt and the pulleys. As the belt wraps around the pulleys, the friction between the belt and the pulley surfaces allows the transfer of torque and power. In contrast, other belts, like timing belts or chain drives, use toothed profiles or interlocking mechanisms to transmit power, providing precise synchronization and higher torque transmission.

3. Load Capacity:

V-belts are designed to handle moderate to high loads, making them suitable for a wide range of applications. However, certain applications with heavier loads may require specialized heavy-duty V-belts or alternative belt types, such as synchronous belts or chain drives, which offer higher load-carrying capacities.

4. Speed Range:

V-belts are suitable for a broad speed range, but their limitations may vary depending on the specific design, material, and construction. Traditional V-belts may have speed limitations at extremely high speeds due to centrifugal forces and heat generation. High-speed V-belts or narrow V-belts are available for applications that require higher speeds. In contrast, timing belts and synchronous belts are designed for precise speed control and are commonly used in applications with strict speed requirements.

5. Tensioning and Maintenance:

V-belts require periodic tensioning to maintain proper grip and power transmission efficiency. Tensioning is typically achieved through manual adjustment or automatic tensioners. Other types of belts, such as timing belts or chain drives, often have fixed tensioning systems and require less frequent maintenance.

6. Noise and Vibration:

V-belts generally operate with lower noise and vibration levels compared to other types of belts, such as chain drives. The design and frictional nature of V-belts contribute to smoother operation and reduced noise generation, making them suitable for applications where noise and vibration control is important.

7. Applications:

V-belts are widely used in various applications, including industrial machinery, automotive systems, HVAC systems, and power transmission in general. They are versatile and can accommodate different power requirements. Other belt types, such as timing belts, are commonly used in precision positioning, robotics, or applications that require synchronous motion.

Overall, V-belts offer reliable and cost-effective power transmission for a wide range of applications. However, the selection of the appropriate belt type depends on factors such as load requirements, speed range, precision, noise considerations, and specific application needs.

v belt

What are the advantages of using V-belts in power transmission systems?

V-belts offer several advantages when used in power transmission systems:

  1. High friction: The V-shaped cross-section of the belt increases the contact area with the pulleys, resulting in high frictional forces. This allows for effective power transmission even in applications with high torque or heavy loads.
  2. Belt wedging: When the V-belt is tensioned, it wedges itself deeper into the pulley grooves, enhancing the friction and preventing slippage between the belt and the pulleys. This feature is especially useful in applications where the driven pulley needs to rotate at a different speed than the driving pulley.
  3. Quiet operation: V-belts generally operate with less noise compared to other types of belts, such as flat belts. The V-shaped design helps to reduce vibrations and noise levels during power transmission.
  4. Simple installation: V-belts are relatively easy to install and replace. They can be quickly mounted on the pulleys without requiring extensive alignment procedures.
  5. Cost-effective: V-belts are typically more affordable compared to other power transmission methods, such as gear systems or synchronous belts. This makes them a cost-effective choice for many applications.
  6. Flexibility: V-belts can accommodate misalignments and slight variations in pulley diameters. They can also operate in a wide range of temperature and humidity conditions, making them versatile for different environments.
  7. Energy efficiency: V-belts have relatively low energy losses during power transmission, resulting in efficient energy transfer between the driving and driven pulleys.

It’s important to note that while V-belts offer numerous advantages, they also have limitations. They are not suitable for applications that require precise speed control or when high-speed ratios are needed. In such cases, other power transmission methods may be more appropriate.

In conclusion, the advantages of using V-belts in power transmission systems include high friction, belt wedging, quiet operation, simple installation, cost-effectiveness, flexibility, and energy efficiency.

China Hot selling Xpb2000 Toothed V-Belts/Super Tx Vextra Belts   axle differentialChina Hot selling Xpb2000 Toothed V-Belts/Super Tx Vextra Belts   axle differential
editor by CX 2024-05-13

TAGs:

V Belt

As one of the v belts manufacturers, suppliers, and exporters of mechanical products, We offer v belts and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of v belts.

Recent Posts